学霸的无限

第268章 秦九韶伽瓦罗型人才

什么是形数?

还要从毕达哥拉斯说起。

毕达哥拉斯用等距离的小石头摆成等边三角形或者正方形,或者五边形、六边形之类的形状,将所用小石头的数目,分别叫做三角形数、正方形数、五边形数。

三角形数:1,3,6,10……就是开始的n个自然数和;

正方形数:1,4,9,16……就是平方数;

然后还有五边形数、六边形数等等。

不要觉得这很简单没多少难度,形数的奥妙多到你想象不到!

说一个简单的,我们研究的勾股定理,其实就是正方形数的一个特例。其等价于,两个小正方形,什么情况下能摆成一个大正方形。

勾股定理假如对幂次进行拓展,a^n+b^n=c^n,就是费马猜想,当然现在是费马大定理了;

如果对项数拓展,有四平方和定理:任何一个整数,表示成a^2+b^2+c^2+d^2……这样的形式,最多需要四项吗?

这完全是形数领域了,最后由欧拉和拉格朗日给出了证明。

但继续拓展就到华林问题了,平方数需要四项,立方数需要几项?5次方呢?6次方呢?这是至今都尚未解决的大坑。

不仅如此,费马在形数领域还挖了另一个坑,叫做多边形数猜想。

该猜想由数学小王子高斯拔得头筹,柯西完成了最终的证明,前后历时两百多年。

虽然证明了,继续拓展就会到完美立方体问题,这又是一个至今尚不能证明或证否的大坑……

所以甘大地虽然才提了个头,叶寒已隐隐感觉不妙。

不是问题他答不出来,当然答不出来的可能性也是有的,但就算答得出来,他的答案丢给对方,对方能够理解的概率也近乎于零。

果不其然,甘大地先抛出了两个比较简单的问题投石问路,如果知道相邻的三角形数之和是正方形数,或者第n个立方数是第n个三角形数的平方,就可以很轻松的给出答案。

然后他就图穷匕见了!

先给了几个例子,比如4=3+1;5=3+1+1;7=6+1;8=6+1+1;9=6+3;14=10+3+1;20=10+10……

然后问叶寒,是不是所有数,都能用最多三个三角形数表示?

是的。

三角形数就可以三个数表示,正方形数就得四个数表示,多少边形数,就可以用多少个数表示,这就是多边形数猜想。费马“地方太小写不下”的著名猜想之一。

上面只是n=3的情况。

但就算n=3也不是那么好证的,想当初数学小王子证出后都兴奋到大叫尤里卡。叶寒不觉得自己把证明抄出来,上面的家伙就一定能看懂。

稍一斟酌他开口道:“我不仅知道所有正整数都可以用三个三角形数表示,还知道可以用四个正方形数表示,或者五个五边形数表示,六个六边形数……只是证明过程太复杂,一时半会说不清。”

虽然情商不高,复制一下当年费马装逼的套路还是不难的。

甘大地再一次木在当场。qq

为什么,因为他后续的问题就是这啊,还没说出口就让叶寒抢答了。

而既然对方想都不想就给出了定论,虽然没有证明过程,想来是真对这个问题研究颇深的。这……还要继续下去吗?

甘大地一时间两难。

若说他脸皮厚,绝对是够厚的。

但厚也有极限。关键是接触以来,叶寒对数术之道的认知远远超乎他想象,在最得意的问题上接二连三被暴击,任他是甘大地,也有点撑不住了。

生出叶寒之学如渊如海,自己这点水性根本够不着底之感。

甘大地发呆的功夫,便宜孙子写的纸条也由他麾下一名敢死队员递到了叶寒的手中。

在接到纸条之前,叶寒对甘大地是隐隐生出了爱才之心的。

想象一下,一个人呆在这上不着天下不着地的悬崖上,仅靠手边的碎石算筹,一会儿摆出了欧拉的自然数和结果,一会儿深入探究了形数领域……

要知道这一切都是自学摸索,没什么参考资料。这要有资料有人指导,岂不妥妥的一颗冉冉升起的数学新星?

……

不过当一目几十行看完便宜孙子纸条上的内容,他的爱才之心……更盛了。

感情这是一个秦九韶、伽瓦罗型的人才啊。

秦九韶,南宋数学大家,在中国剩余定理、三斜求积术、秦九韶算法上,都做出了世界级别的贡献。bbc关于数学历史的记录片,中国其他数学家提的很少,就寥寥几句,唯独对于秦九韶,称得上浓墨重彩。

不过这家伙怎么说呢?贪墨、残暴、结党营私……一切形容贪官的词搁在他身上都不为过。

他的所有数学成就几乎都是在丁忧和罢官的空档做出来的……一旦有官做,这家伙立刻就不务正业开始为非作歹了。

至于伽瓦罗,这确实是一个天才,也非秦九韶那样的贪墨者。但由于家庭的原因,他成了一个激进的运动派,在法国大革命的动荡时期,进出监狱成了家常便饭,虽然死的时候才21岁。

很多人说如果他不死那么早,以他21岁便能开创群论的天赋,至少又一个高斯或欧拉!

但叶寒却觉得未必。

因为这家伙根本不是高斯或欧拉那样会为数学奉献一生的人,如果他一直犯事被关监狱,可能成就会比欧拉或高斯更高,但如果是自由的,而且成为了当权派,成就如何真不好说。

甚至如果不是屡次被关监狱,他群论都未必能那么顺利的推演出来。

了然了前因后果,叶寒心中渐渐做出了决断。

本来截下一段缠天七缩扣他就打算离开这里去跟小伙伴们汇合,现在他想多留一段时间。

吸能,降温,虽然低温并不会影响缠天七缩扣的磁性,甚至还会增强,但会降低缠天七缩扣的韧性,令其脆而易碎。只要脆到一定程度,纯磁性还是很难拴住一个力量近两吨的人的。

当到了一定程度,叶寒断然挥刀斩落。

一声脆响,缠天七缩扣应声而断,他随之弹射出去,终于恢复了自由!

同时腰间环绕的两米来长的七缩扣也应声松脱,应该足够研究之用了。

人气小说推荐More+

快穿之我家宿主是万人迷
快穿之我家宿主是万人迷
新书已发《重生名门第一继承人》 【女扮男装+双强绝宠】做了千百次任务,系统居然中毒?清理病毒,还要绑定另一个系统?! 盛世风华万人迷系统正在启动,剧情正在加载,请宿主大人做好准备! 洛白很想弄死它怎么办?【微笑脸】 小迷迷我家宿主酷炫狂拽吊到没边,很想去抱大腿,然而总是被嫌弃肿么破?! 本书又名《全世界都疯狂迷恋我》 或者又名《万人迷系统怎么卸载?!》 本书苏苏苏,很苏,炒鸡苏,苏破天际!女主很
烈火狂歌
位面劫匪
位面劫匪
银行大劫案”特里,我们的钱和珠宝呢?quot;”被抢了……“钢铁侠”托尼,你的战衣呢?“”被抢了……“变形金刚”擎天柱,你不是被禁闭抓走了吗?”“……禁闭被抢走了……”复联“弗瑞,娜塔莉和玛利亚呢?quot;quot;她们被抢走了……”陈锋抢钱、抢武器、抢飞船、抢妹子嗯……接下来看看看抢什么……一个星球怎么样?一个无法无天的混蛋,抢劫各个电影世界的故事。
位面劫匪
职业快穿:boss总让我撩他
职业快穿:boss总让我撩他
“我的弟弟会做家务又懂事,是我的贴心小天使。”乖巧可爱的弟弟默不作声地锁了门。 “我的男朋友体贴入微给钱花,宠我宠上天。” 清冷淡漠的总裁默不作声地锁了门。 君梨“等等!锁门做什么?” 后来,某个炫耀的女人终于沉默了。 boss总让我撩他,可是为什么最后被扑倒的却是我? 【本文是个小甜饼,不要被它表面所迷惑,真的是小甜饼!推荐作者新书治愈快穿黑化男神,来抱抱】
折树梨花
地府微信群:我的老公是冥王
地府微信群:我的老公是冥王
莫名混进了地府微信群,一不小心摇到了冥王做好友【本文悬疑灵异为主,言情为辅。作者君简介无能,但是故事绝、对、精、彩!】 女主那天夜里下了场诡异的红雨,我从死人的坟墓里爬出来,自此眼通阴阳,魂看三界。 冥王你不就是在恐怖片坟场演了个龙套女鬼么? 女主人艰不拆!!! 冥王我不是人,是鬼~ 女主作者君,我强烈要求换个老公!! 【温馨提示看文后切勿打开微信猛摇附近的人,万一真的出现一只帅男鬼肿么办?】
妹纸爱吃肉
快穿:论逆袭的正确姿势
快穿:论逆袭的正确姿势
系统宿主,委托者只是想要保护妹妹,你怎么成鬼王了?! 星芸不好意思,顺手而已。 系统宿主,委托者只是想证明真相而已,你怎么成首席科学家了? 星芸不好意思,用力过猛 系统…… 来自末世大灾难时期的星芸在时空位面管理局努力奋斗,一路升职加薪,走上人生巅峰的故事! 又名《我在管理局工作的那些年》、《今天我的宿主路线又不对》、《大佬是怎么炼成的》 继续无男主无CP不攻略! PS第一个任务考核任务,进度略
冬虫夏菀